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This paper examines changes in the mean velocity profiles of turbulent boundary
layers subjected to system rotation. Analysis of the data from several studies conducted
in the large rotating wind tunnel at the University of Melbourne shows the existence
of a universal linear correction to the velocity profile in the logarithmic region.
The appropriate parameters relevant to rotation are derived and correlations are
found between the parameters. Flows with adverse pressure gradients, zero pressure
gradients and secondary flows are examined and all appear to exhibit the universal
linear correction, suggesting that it is robust.

1. Introduction
The study of the effects of system rotation on turbulent boundary layers is of

considerable practical importance. The performance of fans, pumps and turbines is
directly affected by the development of the boundary layers on the moving surfaces.
These boundary layers are subjected to Coriolis forces that arise due to the rotating
frame of reference in which they develop. In order to predict and improve the
performance of such devices it is necessary to understand the effects of Coriolis forces
on turbulent boundary layers.

A large rotating wind tunnel situated at the University of Melbourne has been
used to study the effect of spanwise rotation on turbulent boundary layers under
various conditions and has resulted in a significant database on these effects. It has
been observed in these (and other) studies that the mean velocity profiles of the
boundary layers are significantly altered by rotation. In this paper the data from
the experiments are re-examined in order to determine the nature of the change to
the velocity profiles. It will be shown that the modification of the profiles can be
explained by the addition of a universal linear correction that applies in the usual
logarithmic region.

Bradshaw (1969) suggested a similar correction based on an analogy between
both curvature and rotation effects with the effect of buoyancy in turbulent flows.
By drawing this analogy he was then able to use empirical formulae from studies
of atmospheric flows to predict the effects of curvature and rotation on turbulent
boundary layers. He used the Monin–Oboukhov formula which relates the Richardson
number to a change in mixing length. This leads to a linear correction to the
logarithmic profile. In order to estimate the values of the gradient of the correction
for rotating flows he used the data of Halleen & Johnston (1967) which were measured
in a rotating duct flow. Unfortunately, there were insufficient data in the appropriate
region and Bradshaw (1969) admitted that the values of the constants derived from
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these data were not quantitatively useful. Using the analogy and empirical results
from atmospheric boundary layers he also suggested that the gradient of the extra
linear term would be different for the ‘stabilized’ and ‘destabilized’ layers.

Galperin & Mellor (1991) have also analysed boundary layers with streamline
curvature and spanwise rotation using a turbulence model with algebraic equations
for the Reynolds stresses and differential equations for the turbulence energy and
length scale. Using a local equilibrium approximation they showed that the flow
depends on a single stability parameter. Applying the analysis to the ‘constant flux
layer’, and assuming that the mixing length in this region is proportional to κy, they
then derive an equation for the mean velocity profile. To first order this involves the
usual logarithmic law with a linear correction similar to that suggested here.

Litvai & Preszler (1969) suggested a different modification to the mean velocity
profiles. Their proposal is that the von Kármán constant, κ, changes with rotation.
The analysis to support this suggestion is based on a loose analogy with a spring–mass
system that the authors of the present paper do not find very convincing. Nevertheless,
Watmuff, Witt & Joubert (1985) showed that with a certain choice of constants the
modification appeared to fit their data. A comparison of this modification with
the linear correction is given in Appendix A. Galperin & Mellor (1991) are similarly
unconvinced by this approach and comment that: “...departures from the conventional
law-of-the-wall are themselves not logarithmic and cannot be modelled merely by a
change in κ.”

The purpose of this paper is to examine the form of the mean velocity profiles
in turbulent boundary layers subjected to system rotation using dimensional analysis
and then to examine the (quite large amount of) available data in the light of this
analysis. The data considered consist of over one hundred mean velocity profiles from
three different studies conducted at Melbourne plus a few more, measured specifically
for this paper, in a flow with a strong pressure gradient.

2. Apparatus
All of the data examined in this paper were measured in the large rotating wind

tunnel at the University of Melbourne. Although the apparatus has been described in
detail in several of the publications cited, a brief description follows. Figure 1 shows
the configuration. As shown, a two-stage axial flow fan driven by a DC motor blows
air through a coupling along the axis of rotation of the test section. This flow is turned
(using turning vanes) through three corners, passes through a settling chamber with
honeycomb, screens and a contraction and then exits through the working section
in a radial direction. The boundary layers on both vertical walls are tripped using
1.2 mm trip wires located approximately 30 mm downstream of the contraction exit.
The size of the trip was chosen in accordance with the recommendations of Erm
(1988). The boundary layer to be studied develops on one of the vertical walls of the
working section (the ‘measurement wall’) and an automated traverse is mounted on
the opposite wall. The traverse can be mounted at various streamwise (x) positions to
study the development of the boundary layer and can move the probe normal to the
wall (y-direction) and in the spanwise direction (z-direction). The two vertical walls
may be adjusted to impose a pressure gradient in the working section. The sense of
rotation of the working section can be reversed so as to reverse the direction of the
Coriolis force on the measurement wall. This removes the necessity of measuring the
boundary layers on both walls. The convention used here for indicating the direction
of rotation is to describe the wall on which the pressure is reduced as the suction-side
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Figure 1. Elevation of rotating wind tunnel used for the results presented.

wall, and the wall on which the pressure is increased as the pressure-side wall. The
suction-side wall is also referred to as the stabilized side and the pressure-side wall
as the destabilized side from the results of stability analysis. The sense of rotation is
considered as positive for the suction-side boundary layer.

Static pressure measurements have been made using wall pressure tappings. Velocity
measurements were made using a Pitot tube of 1 mm diameter.

The skin friction was measured using a Preston tube of 1 mm diameter. In order to
check for errors due to rotation, different diameter Preston tubes were used to measure
the skin friction (d =1.0, 1.4 and 1.8 mm). These sizes corresponded to 15 < d+ < 40
(where d+ = dUτ/ν) and it was found that tube size and rotation effects were less
than 1% in this range.

3. Theory
In order to illustrate the effect we are considering, and before proceeding with the

analysis, we present figure 2 which shows the change in the boundary layers at a
given streamwise station with zero, positive (suction-side) and negative (pressure-side)
rotations. Also shown is the standard log law given by

U

Uτ

=
1

κ
ln

(
yUτ

ν

)
+ A; (3.1)

here Uτ is the wall-shear velocity given by Uτ = (τw/ρ)1/2 and τw is the wall shear
stress. The values of the universal constants κ and A are assumed (where necessary)
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Figure 2. Example of effect of rotation on mean velocity profiles.

to be 0.41 and 5.0 respectively. It should be noted that quantities non-dimensionalized
using ν and Uτ will be given the superscript + and hence U+ = U/Uτ and y+ = yUτ/ν.
These profiles are taken from Macfarlane, Joubert & Nickels (1998) for zero-pressure-
gradient flow with a free-stream velocity of 10 m s−1 at a streamwise position 990 mm
from the trip wire and for rotation rates of −2π, 0 and 2π radians s−1. It may be
noted that there is an increase in the profile on the suction side and a decrease on
the pressure side relative to the zero-rotation case. The discussion of this behaviour
forms the subject of the present work.

Dimensional analysis may be applied to this problem in order to examine the
correct relationships among the variables. The derivation of the logarithmic velocity
variation in a turbulent boundary layer is considered. In general we have

U = f1(y,Uτ, ν, δ, U1), (3.2)

where U is the velocity at some distance y normal to the wall, Uτ is the wall shear
velocity, ν is the kinematic viscosity, δ is the boundary layer thickness and U1 is
the free-stream velocity at the edge of the layer. Where needed, the boundary layer
thickness will be taken as the 99.5% thickness, i.e. the distance from the wall, y,
at which the velocity first reaches 99.5% of the free-stream velocity, U1. Let us
then suppose that if the Reynolds number is high enough then there will be a region
within the layer, away from the wall, where the effect of viscosity on the ‘mean relative
motions’ is insignificant. Let us suppose further that if this region is sufficiently far
from the edge of the layer that the ‘outer variables’, U1 and δ have an insignificant
effect. We are then led to the conclusion that within this region

∂U

∂y
= f2(y,Uτ) (3.3)
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and hence non-dimensionalizing

y

Uτ

∂U

∂y
=

1

κ
, (3.4)

where κ is the usual von Kármán constant. Integration of (3.4) then leads to the
logarithmic law,

U

Uτ

=
1

κ
log

(
yUτ

ν

)
+ A, (3.5)

where A and κ are universal constants as noted earlier.
In the case of rotation we can postulate a similar region where the effects of

viscosity and the outer variables are negligible but we must include an extra variable
Ω, the rotation rate. This then leads to

y

Uτ

∂U

∂y
= f3

(
Ωy

Uτ

)
. (3.6)

To simplify notation we will define this new parameter as

ξ =
Ωy

Uτ

. (3.7)

The form of this function is not defined by the above analysis but the analysis of
Galperin & Mellor (1991) and of Bradshaw (1969) suggest that it may be Taylor
series expanded. To ensure consistency with the non-rotating case, we assign the
zeroth-order term the same value, then

y

Uτ

∂U

∂y
=

1

κ
+ βξ + h.o.t., (3.8)

where β is a universal constant. If we drop the higher-order terms (h.o.t.) then
integrate we find

U

Uτ

=
1

κ
log

(
yUτ

ν

)
+ A+ βξ + B(Ω+), (3.9)

where B is a constant of integration that must depend on Ω+, which is the appropriate
rotation parameter close to the wall based on wall variables defined by

Ω+ =
Ων

U2
τ

. (3.10)

This is a ratio of the viscous length scale to a rotation length scale, i.e. Uτ/Ω and we
shall refer to Ω+ as the ‘viscous rotation parameter’. We would expect the constant β
to be universal since we have assumed that no other parameters apply in this region.
It should be pointed out that it is not possible to decide a priori on the importance
of the higher-order terms. The approach adopted here is to examine the empirical
results in order to see how well the profiles fit the proposed correction.

If the above analysis holds, and we subtract the mean velocity profiles in the
rotating case from the zero-rotation case, we expect to see a universal linear region in
all the profiles with a vertical shift which depends on Ω+. Further, we would expect
this region to correspond with the region in which the log law applies, since the
reasoning is analogous.

In fact we can make an estimate of the region over which this should apply. Close
to the wall dimensional analysis suggests the functional form should be

U+ = f(ξ, Ω+), (3.11)
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and for U+ to depend on only the first parameter the ratio of the two should be
sufficiently large, i.e. greater than some number C , which leads to

y+ > C (3.12)

which is the same condition as we expect for the existence of the log law. Examination
of boundary layer data suggests that C ≈ 30 for boundary layers without rotation.
In the outer region, if we assume that Uτ is still the relevant velocity scale then an
appropriate rotation parameter would be Ωδ = Ωδ/Uτ. We would expect that the
ratio of ξ to this number should be less than some number D for the arguments to
apply, hence

y

δ
= η < D (3.13)

which is the same limit used to define the end of the logarithmic region. The data
suggest that D ≈ 0.25. It should be noted that Coles’ law of the wake suggests that
the outer limit should also depend on the size of the wake factor Π which is known to
be a function of pressure gradient. As Π increases, the effect of the wake penetrates
further into the layer. Nevertheless, for flows where the change in the wake parameter
is small, the limit is a reasonable first approximation. Examination of the extent of
the logarithmic region in the data discussed in this paper suggests that these limits
are reasonable.

It is relevant to ask what the behaviour of this extra term is very near the wall,
i.e. below our limit of y+ = 30. Consider the Taylor series expansion of the velocity
profile near the wall. The first term of this series is

U+ = y+ (3.14)

which follows only from the definition of the wall shear stress. Hence at the wall the
effect of rotation does not appear explicitly. It may (and does) affect the value of
the wall shear stress but it cannot explicitly affect the first term. In order to conduct
a more extensive expansion we consider the boundary layer momentum equations.
These have been presented by Johnston, Halleen & Lezius (1972) and for a steady
boundary layer may be written as

U
∂U

∂x
+ V

∂U

∂y
− 2ΩV = −1

ρ

∂P ∗

∂x
+

1

ρ

∂τ

∂y
(3.15)

and

2ΩU = −1

ρ

∂P ∗

∂y
− ∂v′2

∂y
, (3.16)

where the upper-case letters refer to time-averaged quantities and P ∗ is the reduced
pressure defined by P ∗ = P − 1

2
ρΩ2r2, r being the distance from the axis of rotation.

Since the centrifugal force is conservative then it is usual to combine it with the static
pressure in this way since it has no direct effect on the dynamics of the flow. It is
possible to integrate the second equation and substitute it into the first, and with the
application of continuity this leads to

U
∂U

∂x
+ V

∂U

∂y
= −1

ρ

dP ∗o
dx

+
1

ρ

∂τ

∂y
, (3.17)

where P ∗o is the reduced static pressure at the wall and we have dropped the small
terms which correspond to streamwise derivatives of turbulence intensities. This simple
analysis is repeated here since there appears to be an error in Johnston et al. (1972).
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Their equation (4) is dimensionally incorrect and is also made more complicated by
the choice of the pressure at the edge of the layer as the constant of integration. The
analysis used here demonstrates the fact that the rotation does not enter explicitly into
the equation for the streamwise momentum. The form of (3.17) is also useful when
examining the present results (and others) since the pressure gradient is measured
via static pressure taps on the wall. The equation is then no different from the
standard momentum equation for boundary layers without rotation and hence the
series expansion should be the same. The series expansion is reasonably well known
and is given by

U+ = y+ − 1
2
P ∗+o y+2 + a3y

+4 + h.o.t. (3.18)

where P ∗+o is the reduced pressure gradient at the wall non-dimensionalized with wall
variables. The first two terms of the series are identical to the zero-rotation case but
the constant a3 depends on terms involving the streamwise derivative of the wall
shear stress, the streamwise derivative of the streamwise component of the turbulence
intensity and a term proportional to the Reynolds shear stress. The first two terms
of the series are identical to the zero-rotation case but the constant in the third term
can change since the equations for the evolution of the Reynolds shear stress and
the turbulence intensities contain extra terms for production which explicitly involve
the rotation. Series expansion of the transport equation for the Reynolds shear
stress suggests that, to lowest order, a3 should include an extra term proportional to
the viscous rotation parameter Ω+ (since the evolution equation contains an extra
‘production’ term proportional to Ω). Hence we can infer that, if we take the difference
of U+ in the rotating case and in the stationary case in the near-wall region, the first
term in the expansion should be at least of order y+4 and should be proportional to
Ω+. We also know that this function must asymptote to βξ + constant for y+ > 30
and so we can construct a plausible form of the inner function as

∆U+ = βΩ+ y+4

(y+
c + y+)3

, (3.19)

where y+
c represents a ‘corner’ point where the function changes from fourth order in

y+ to linear. This function asymptotes to y+4 as y+ → 0 and βξ − 3βΩ+y+
c for large

y+. The choice of this corner may be made empirically but it should be such that
beyond y+ ≈ 30 the function becomes linear. A useful definition of the corner, which
is directly related to the sub-layer thickness, is the point at which the production is
a maximum. This is found empirically to be around y+ = 11 and hence is the value
assumed for the corner. This leads to a constant of B(Ω+) = 33βΩ+.

The constant term can also be arrived at by noting that the departure of the profiles
from a universal form very close to the wall appears to occur at a fixed value of
y+. Examination of the experimental results suggests that the rotating profiles depart
from the stationary profiles close to the point (U+, y+) = (13.7, 35). If we denote this
point by (Uo, yo) then

U −Uo =
Uτ

κ
ln (y)− Uτ

κ
ln (yo) + βΩ(y − yo), (3.20)

where the constant of integration has been removed by subtracting the two profiles.
Non-dimensionalizing and rearranging this becomes

U+ =
1

κ
ln (y+)− 1

κ
ln (y+

o ) + βξ − βΩ+y+
o +U+

o . (3.21)
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Substituting the empirical values for (U+
o , y

+
o ) then leads to

U+ =
1

κ
ln (y+) + βξ + 5− 35βΩ+, (3.22)

which is close to the form found before from a consideration of the near-wall
expansion. While this approach is simpler than that given previously it gives no
explanation of why the innermost flow is largely unaffected by the rotation. The
previous analysis demonstrates the basic form of the correction in terms of its series
expansion.

3.1. Clauser chart

The excellent fit of this functional form to the data (shown later) suggests that a
modified Clauser chart could be constructed as a means of evaluating the skin friction
from the mean velocity profiles. This would take the form

U

U1

=
1

S

[
1

κ
ln (R) +

1

κ
ln (1/S) + A

]
+ β

Ων

U2
1

[R − 33S], (3.23)

where R = yU1/ν, and the procedure would be to plot U/U1 versus R and adjust
S = U1/Uτ to find the best fit in the appropriate region. Once S is known the skin

friction is known since S =
√

2/C ′f . The classical approach is of course to plot a

family of curves for different values of S and then plot the empirical results on this
chart, in order to find the line of best fit to the data.

4. Results
The above analysis suggests the existence of a logarithmic region. The results shown

here are for boundary layers of low-to-moderate Reynolds numbers. There is some
question as to the existence of a log law at these low Reynolds numbers. In response
to a request from a reviewer we show here the evidence for the possible existence
of a logarithmic region. The most convincing way to demonstrate the existence of
such a region is to plot y+(dU+/dy+) versus y+. If a logarithmic region exists, the
plot should exhibit a plateau. The problem with this approach is that it requires
the differentiation of experimental data which are inherently noisy (despite the best
efforts to ensure converged data). In order to overcome this problem the profiles were
first smoothed using a three-point running average. The effect of this is similar to a
short-wavelength filter and helps to remove random measurement errors. There are
around forty points in each profile and hence the smoothing does not alter the shape
of the profiles significantly. The results for the zero-rotation profiles of Macfarlane et
al. (1998) are shown in figure 3. Their parameters are given in Appendix B. There does
appear to be a short plateau in the results but the existence of a logarithmic region is
arguable. It should be pointed out that it is difficult to achieve high Reynolds number
boundary layers subject to system rotation in the laboratory due to limitations on
the size of the apparatus. Despite the low-to-moderate Reynolds numbers it will be
shown that a linear correction of the form derived appears to be appropriate. It
should be noted also that the logarithmic form is not assumed when analysing the
profiles.

The following plots are produced by subtracting the profiles subjected to rotation
from the zero-rotation profiles at the same streamwise location. A cubic-spline inter-
polation was used in order to account for the different spacing of the points on the
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Figure 3. Test of existence of logarithmic region for the zero-rotation profiles
of Macfarlane et al. (1998).

profiles. Previous analyses of data (e.g. Watmuff et al. 1985; Bradshaw 1969) have
assumed a logarithmic law for the zero-rotation profiles and subtracted this assumed
functional form from the rotating profiles. The present approach makes no a priori
assumption about the existence of a logarithmic region or the values of the constants
(κ and A). Also, the present approach should reduce the effect of any consistent errors
or offsets in the measurements. We are simply examining the difference between the
rotating and non-rotating mean velocity profiles so as to ascertain the effects of
rotation. In order to make the process of evaluating the value of the gradient, β, more
objective, a least-squares linear fit was made to the data in the region y+ > 35 and
η < 0.22. Since rotation changes the thickness of the boundary layer the minimum
value was used as a conservative means of finding the upper limit of the universal
region.

Figure 4 shows the results of this procedure applied to the profiles of Macfarlane
et al. (1998). The magnitude of the gradient is plotted versus Ωδ and no trend with
rotation is apparent. The results support a value of 9.7 ± 8% with an RMS error
of about ±5%. The reason for looking at these results in particular is that the data
files were directly available, whereas for the results of Watmuff et al. (1985) and Ibal
(1990) they were measured from printed plots using computer software and so involve
some extra error. For comparison a plot of the gradient evaluated by this process
for all of the zero-pressure-gradient data available is shown in figure 5. The scatter
is much larger but nevertheless supports the conclusion that β shows no significant
trend with rotation. The mean of the data in this plot is 10.0 with an RMS error
of ±9%. It should be noted that these values were obtained objectively without
additional subjective input. Visual examination of the fit for the profiles resulting in
the outlying points generally shows a poor fit with large scatter. These results were
still included in order to be objective. Another crucial point to note is that moderate
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Figure 4. Gradient of similarity region (y+ > 33, η < 0.22) for results
of Macfarlane et al. (1998).
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Figure 5. Gradient of the linear correction in the region (y+ > 33, η < 0.22): all zero
pressure-gradient studies.
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Figure 6. Intercept of the linear correction in the region (y+ > 33, η < 0.22): found assuming a
gradient of 9.7: all zero-pressure-gradient studies.

errors in the value of the constant lead to fairly small errors in the velocity profile.
The reason is that in this region U+ varies from approximately 14 to 17. The largest
value of ∆U+ in the region is approximately 2 for this range of rotation and hence
the worst error in U+ is approximately 1%.

In order to examine the behaviour of the constant, B(Ω+), in the similarity region,
all profiles were fitted with a line 9.7ξ + B in this region using least-squares curve-
fitting procedure. The result is shown in figure 6. The constant is sensitive to errors
and, as a result, there is a large scatter in the data. Nevertheless least-squares curve-
fitting of a line to this data gives B = 333Ω+ as shown on the plot with an RMS
error of ±5%. This may be compared to the value suggested by the analysis which
is 3βy+

c Ω
+ and using the values β = 9.7 and y+

c = 11 suggested predicts B = 320Ω+.
It should be emphasized that the values of β and y+

c were chosen before these data
were plotted and the very close agreement came as a pleasant surprise to the authors.

Having found, in an objective manner, that the conclusions from the analysis are
reasonable, the collapse of the data for a series of different experiments is displayed.
These profiles were derived as discussed above, i.e. by subtracting the profiles with
rotation from the zero-rotation profiles at the same streamwise location. The profiles
were first normalized in the standard ‘universal’ form of U+ versus y+ which results
in a collapse in the region close to the wall. Shown first are the profiles of Macfarlane
et al. (1998) since these are the most accurate. The profiles have also been shifted
according to the value of the constant, B(Ω+), calculated from the theory. This means
that the linear region should pass through the origin and the profiles should collapse
in the similarity region onto the line ∆U+ = βξ. Figure 7 shows the profiles from the
suction-side boundary layers and it may be noted that the collapse in the inner region
is excellent, with the profiles peeling off from the universal law later as the rotation
number increases. On this and later plots the number adjacent to each curve is the
value of the outer rotation parameter, Ωδ/Uτ, which gives the reader a measure of
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Figure 7. All profiles from the suction-side wall for the zero-pressure-gradient measurements of
Macfarlane et al. (1998).
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Figure 8. All profiles from the pressure-side wall for the zero-pressure-gradient measurements of
Macfarlane et al. (1998).

the strength of rotation. As a general rule this parameter increases with streamwise
distance. The noise in the profiles very near the wall arises from subtracting large
numbers that are almost equal.

Figure 8 shows the pressure-side results. Although the difference between the
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pressure-side and the zero-rotation profiles is negative they will be shown as positive,
i.e. we plot −∆U+ for ease of comparison with the suction-side profiles. Again we
have a good collapse in the inner region although in this case the profiles appear
to peel off to the left of the universal line, i.e. they are above the line, whereas for
the pressure side the peel-off is to the right of the line. This is due to the change
in δ+ which occurs as a consequence of rotation. The difference in δ+ also leads
to the characteristic hump in the outer region. The outer flow will be considered
later but it is worth noting that dimensional analysis suggests the more appropriate
non-dimensional wall distance in this region is y/δ where δ is the boundary layer
thickness. This is of course no different to the situation in boundary layers without
rotation effects. A point that should be stressed here is that some readers may be
tempted to conclude that the pressure-side profiles would be better fitted to a line with
a larger value of β since they peel off above the line suggested here. It is important
to realize that the linear region should only apply below η ≈ 0.25 and any attempt
to fit it beyond this region would lead to misleading results. This may be the reason
why some researchers have suggested different empirical constants for stabilized and
destabilized flows (i.e. different β). The results presented here suggest that the constant
does not depend on the sign of rotation. Over fifty profiles have been plotted in this
form and all show a similar collapse onto the universal line. Among them were the
profiles of Watmuff et al. (1985) for a range of different Reynolds numbers.

It is also interesting that the value of the constant suggested in Bradshaw (1969)
for the suction-side profiles (destabilized) is approximately 9, which is close to the
value of 9.7 found here.

5. Errors in wall shear stress
In order to establish the validity of the conclusions here a brief discussion of the

possible errors in the wall shear stress are discussed.

5.1. Consistent errors in Uτ

The calibration of Patel (1965) for the Preston tube was used to calculate the skin
friction from the measurements. In the range of the measurements Patel (1964)
suggests that the curve-fit to the data given is within ±1.5% of the data. This
corresponds to an error in Uτ of ±0.75%. This then must be assumed to be the error
in Uτ. It will be assumed further that in two given similar flows this error will always
be in the same direction as will any small errors in the instrumentation. An error in
Uτ of (1 + ε) then results in a error in ∆U+ of 1/(1 + ε); it will also lead to an error
in Ωy/Uτ of 1/(1 + ε) and so in the linear region these errors will tend to cancel and
the gradient will be unchanged.

5.2. Errors of Preston tube measurements due to rotation

In the majority of the experiments examined here the Preston tube diameter was such
that d+ = dUτ/ν < 35 and in this region the effect of rotation was found to be very
small, i.e. the mean flow profiles collapsed in this inner region. Thus there should be
no direct effect of rotation on the measurement due to a change in the functional
form of the mean velocity profile. In fact the functional modification derived here has
a negligible effect at these low values of y+. The other source of potential error arises
since the static pressure at the wall was used as a reference for the Preston tube. The
potential for error arises since rotation introduces a pressure gradient normal to the
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Figure 9. All profiles from the suction-side wall for the 10 m s−1 adverse-pressure-gradient
measurements of Ibal (1990).

wall. As derived earlier this pressure gradient is given to first order by

∂P

∂y
= ρ2ΩU(y). (5.1)

A conservative (i.e. large) estimate of the error can be made by assuming that the
velocity profile is linear throughout this region, i.e.

U+ = y+, (5.2)

which leads to
P − Po
Pdyn

= 2Ω+. (5.3)

In the range of values of rotation parameter obtained in these studies the maximum
of this error is less than 0.25% and so may be considered negligible. In addition the
effect of rotation was examined by measuring the skin friction with different diameter
tubes as mentioned previously. The difference was always less than 1%.

6. The effect of added pressure gradient
In order to evaluate the effect of adverse pressure gradient on the ‘universal’ region

the results of Ibal (1990) have been re-analysed. Ibal (1990) studied the effects of
rotation on the turbulent boundary layer in a diffusing duct with a 3◦ included angle.
This results in a reasonably strong pressure gradient.

The results are shown in figures 9 and 10. It appears that, even with the addition
of a pressure gradient, the universal scaling applies in the inner region. This should
not be surprising since the logarithmic law still applies in adverse-pressure-gradient
flows and the existence of a universal region here is based on the same assumptions.
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Figure 10. All profiles from the pressure-side wall for the 10 m s−1 adverse-pressure-gradient
measurements of Ibal (1990).

In order to further examine the effect of pressure gradient, mean velocity profiles
were measured in an 8◦ (included angle) rotating diffuser which has an even stronger
adverse pressure gradient. The results in figure 11 clearly show a linear region with a
constant close to the value of 9.7 suggested.

7. Effect of secondary flow
Rotation of ducts with low aspect ratios leads to the occurrence of secondary

flows. This is due to the flow of fluid from the high-pressure side to the low-pressure
side along the walls perpendicular to the axis of rotation. These secondary flows can
cause significant changes to the mean flow and turbulence quantities. Here we look
briefly at some results from a low-aspect-ratio duct to see if the linear correction
still applies. The results of Macfarlane et al. (1998) for a duct of aspect ratio 1 are
shown in figures 12 and 13 for the last streamwise station, where rotation effects are
large and secondary flows are also significant. The universal behaviour still applies,
although the peel-off is more pronounced on the pressure side. This is not surprising
since it has been shown in Macfarlane et al. (1998) that the secondary flows introduce
streamline convergence on the suction side and divergence on the pressure side. The
results of Panchapakesan et al. (1997) and Saddoughi & Joubert (1991) on the effect
of streamline divergence and convergence on zero-pressure-gradient boundary layers
show that divergence increases the skin friction and suppresses the boundary layer
growth. The net effect in this case is to increase δ+ and hence increase the difference
in δ+ between the pressure side and the zero rotation case. On the suction side the
net effect is also to increase δ+ but this brings it closer to the zero-rotation value
and hence reduces the difference in the outer flow. This explains the reduced peel-off
for the suction-side profiles and the increased peel-off on the pressure side. Figure
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Figure 11. Profiles measured in strong (8◦ included angle diffuser) adverse-pressure-gradient
flow for both suction- and pressure-side walls (present results).
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Figure 12. Profiles of difference for the suction-side results of Macfarlane et al. (1998) for zero
pressure-gradient flow in a duct of aspect ratio 1.
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zero-pressure-gradient flow in a duct of aspect ratio 1.
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Duct of aspect ratio 1, x = 990 mm.
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Figure 15. Profiles with matched δ+ with linear correction applied across whole layer.

14 shows the profiles with the correction applied. The collapse is very striking. This
flow case is considered a very important test of the universality since the turbulence
structure of the flow is modified quite markedly by the secondary flows as will be
discussed later.

8. The correction at fixed Reynolds number
It has been noted in the previous sections that the shape of the profiles of ∆U+

in the outer region is significantly affected by the change in δ+ that occurs due
to rotation. In order to examine the changes in the outer flow in the absence of
these effects, profiles have been selected from different streamwise stations so as to
match the values of δ+ for rotating and stationary profiles. In this way it is possible
to remove the effect of δ+ variations and examine the change in the profiles due
to rotation alone. Suction, pressure and zero-rotation profiles at the same δ+ were
examined and the proposed correction was removed from the profiles subjected to
rotation. In essence then we are removing the effect of rotation and would expect all
the profiles to collapse onto the standard log law in the region already defined. The
results are shown in figure 15. One interesting feature of this plot is that it appears
that the linear correction applies beyond the log region and some way into the outer
flow. This extended fit of the linear correction was observed for all profiles examined
at fixed δ+. Naturally it must fail near the outer edge since the velocity attains a
constant value. For interest, and in order to allow for this boundary condition, a
simple damping was applied to the linear correction of the form

∆U+ = (βξ + 33βΩ+)(1 + (2η)4)/(1 + (2η)5). (8.1)

The powers were chosen to provide a rapid approach to a constant value as is
obviously necessary from figure 15. Figure 16 shows the result of applying this
correction to the same profiles. The results are quite impressive, the only difference
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Figure 16. Profiles with matched δ+ with extended correction from (8.1).

between the profiles being a small deficit right at the outer edge. In order to show
that the result applies more generally, the same correction has been applied to
profiles from an 8◦ diffuser. The three profiles shown in figure 17 are from the same
streamwise station, but due to the nature of the flow the δ+ values are, nevertheless,
approximately matched. The pressure-gradient parameter is also well-matched. The
profiles collapse very well over most of the layer.

The observation that the linear correction applies some way into the outer flow for
profiles with matched δ+ is a very interesting result. It suggests that the outer limit for
the validity of the correction derived earlier is quite conservative and that the effect of
the outer flow scale, δ, on the correction is smaller than was anticipated. The good fit
to the profiles with the addition of the empirical damping suggests that the changes
in the wake component due to the rotation alone are not large when the Reynolds
numbers are matched. It is relevant to note that in low-to-moderate Reynolds number
boundary layers it is well known that there is a dependence of Cole’s wake factor on
Reynolds number. At a fixed streamwise station rotation changes the local Reynolds
number and hence may affect the wake component. At fixed Reynolds number this
effect has been removed and it appears that changes to the wake component are small.

9. Comment on the value of the constant
The results of this study have given a value for the gradient of the linear correction,

β, as 9.7±8%. This corresponds approximately to 8.9 < β < 10.5. Galperin & Mellor
(1991) find from their model a value of 7.02. This is approximately 30% lower than
the value found here and is well outside the error bounds. Hunt & Joubert (1979)
suggested that the value of the constant could be found from a comparison of the
ratio of the Reynolds-shear-stress production terms with and without rotation (or in
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Figure 17. Profiles from 8◦ diffuser with matched δ+ and extended correction
applied from (8.1).

their case curvature effects). This leads to

β = 2(u2/v2 − 1). (9.1)

The results of Macfarlane et al. give u2/v2 ≈ 2.5 in the outer part of the logarithmic
region (0.15 < η < 0.2) which would give β ≈ 3. If, instead, we take the point
of maximum production near the wall then from the simulation of Spalart (1988)
u2/v2 ≈ 25 which gives β = 48. This suggestion then seems flawed in that the value
of this ‘constant’ varies significantly with position through the layer.

The results from the low-aspect-ratio duct emphasize the difficulty of relating
the value of β to the turbulence quantities. In particular, the effect of streamline
convergence on the suction-side wall leads to large changes in the turbulence quantities
near the wall. At the final station for this case the stresses have been reduced by
around 30%. Also, the value of u2/v2 increases from around 2.5 to 3.5 due to
the secondary flows (see Macfarlane et al. 1998). Nevertheless the universal linear
correction appears to be unaffected. There does not, as yet, seem to be a convincing
explanation for either the value of β, or its universality. Like κ it appears to be a
universal constant particularly associated with the mean velocity profile.

10. Conclusions
The results and analysis in this paper show that the effect of rotation on the

mean velocity profiles of turbulent boundary layers is well-described by a universal
linear correction to the logarithmic law. Analysis of a large number of mean velocity
profiles under different imposed conditions shows that this linear correction is robust.
It does not appear to be affected by Reynolds number (over a limited range), strong
adverse pressure gradients or secondary flows. The gradient of the correction term
is of the same magnitude for stabilized and destabilized layers. It also appears that
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with an appropriate universal damping the linear correction is a reasonably good
approximation across the whole layer.

The buffer zone y+ < 30 does not, however, appear to be significantly affected by
rotation and the reasons for this have been discussed in terms of the Taylor series
expansion of the mean flow. A useful consequence of this is that Preston tubes of
diameter d+ < 30 may be used in these flows to measure skin friction.

Appendix A. Comparison to the change in log law constant hypothesis
After analysing their results Watmuff et al. (1985) proposed that the effect of

rotation was to change the value of the von Kármán constant and hence the gradient
of the logarithmic region on semi-log paper. The argument for this hypothesis is
based on a spring–mass analogy as suggested by Litvai & Preszler (1969) and further
extended by Johnston (1974). The details of the analysis will not be repeated here but
the authors of this paper do not find the arguments to be very rigorous or convincing.
We will first show that the magnitude of their correction is similar to that proposed
here and therefore gives a reasonable fit to the data. We then point out why their
suggestion is not consistent with the usual dimensional arguments for the existence of
the logarithmic region. Watmuff et al. (1985) found, using the analogy and empirical
results, an expression for the modified von Kármán constant which was

1

κr
=

1

κ
(1 + CΩ+), (A 1)

where κr is the new or modified constant and C is another supposedly ‘universal’
constant to be determined empirically. Now, if it is assumed that, instead, the form
suggested in the present work is correct, it is possible to examine what the apparent
form of the modified constant would be if this alternative approach were used. In the
logarithmic region this leads to

1

κr
ln (y+) + Ar =

1

κ
ln (y+) + A+ βξ − 3βy+

c Ω
+, (A 2)

where A is the usual additive constant in the log law (A = 5 for the data considered
here) and Ar is the constant for the rotating case. Watmuff et al. (1985) find the value
of Ar by assuming that all profiles coincide at the point U+ = 15, y+ = 40 which
leads to

Ar = 15− ln (40)/κr. (A 3)

Substituting this into (A 2) and using the fact that ξ = Ω+y+ and the value found
earlier for y+

c , leads directly to

1

κr
=

1

κ

(
1 + κβΩ+ (y+ − 33)

ln (y+)− ln (40)

)
. (A 4)

This is of the same form as that of Watmuff et al. (1985) if the function

(y+ − 33)

ln (y+)− ln (40)
(A 5)

is approximately constant over the region where the log law applies. The region over
which the log law applies in most of their data is approximately from 45 < y+ < 200
and the maximum and minimum values of this non linear function over this range
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x (mm) Ω (rad s−1) U1 (m s−1) δ (mm) Ω+ (×103) Ωδ S

300 2π 10 12.7 0.443 0.173 21.7
300 0 10 13.4 0 0 21.4
300 −2π 10 13.9 −0.411 −0.184 20.8
530 2π 10 16.3 0.496 0.237 22.8
530 0 10 17.3 0 0 22.3
530 −2π 10 19.1 −0.438 −0.263 21.2
760 2π 10 18.9 0.540 0.285 23.8
760 0 10 19.7 0 0 23.0
760 −2π 10 23.3 −0.440 −0.323 21.6
990 2π 10 21.4 0.579 0.336 24.6
990 0 10 24.2 0 0 23.4
990 −2π 10 29.7 −0.469 −0.421 22.0

Table 1. Parameters for profiles of Macfarlane et al. (1998).

are 103 and 68 respectively. If we take the average of this non linear function over
the range we find a value of 82, which leads to

1

κr
= 2.44− 795Ω+ (A 6)

as compared with

1

κr
= 2.44− 750Ω+ (A 7)

found empirically by Watmuff et al. (1985). Hence we have found that the magnitude
of the correction they suggested coincides approximately with that of the linear
correction derived in this paper.When examined on the usual (U+, y+) plot it is
difficult to choose between them. Dimensional analysis does, however, suggest a valid
criticism of the above form. If we use the form given above it is not difficult to derive
an expression for ∂U/∂y which is

∂U

∂y
=
Uτ

κy
+
CΩν

yUτ

(A 8)

and hence according to this model the ‘mean relative motions’ are no longer inde-
pendent of viscosity. It is difficult to understand how the effect of rotation could lead
to a dependence of this region on viscosity since it is the independence from viscous
effects that leads to the ‘log law’. The problem cannot be remedied by choosing Ωδ
as the relevant parameter as this would lead to functional dependence on the outer
flow variables. The analysis and empirical results in this paper suggest that the mod-
ification of κ by rotation is not justified and a linear correction is better supported
by both analysis and experiment.

Appendix B. Table of mean flow parameters for the data
The mean parameters for the data of Macfarlane et al. (1998) are presented in

table 1.
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